156 research outputs found

    Visual servoing of aerial manipulators

    Get PDF
    The final publication is available at link.springer.comThis chapter describes the classical techniques to control an aerial manipulator by means of visual information and presents an uncalibrated image-based visual servo method to drive the aerial vehicle. The proposed technique has the advantage that it contains mild assumptions about the principal point and skew values of the camera, and it does not require prior knowledge of the focal length, in contrast to traditional image-based approaches.Peer ReviewedPostprint (author's final draft

    Real-time tracking of 3D elastic objects with an RGB-D sensor

    Get PDF
    This paper presents a method to track in real-time a 3D textureless object which undergoes large deformations such as elastic ones, and rigid motions, using the point cloud data provided by an RGB-D sensor. This solution is expected to be useful for enhanced manipulation of humanoid robotic systems. Our framework relies on a prior visual segmentation of the object in the image. The segmented point cloud is registered first in a rigid manner and then by non-rigidly fitting the mesh, based on the Finite Element Method to model elasticity, and on geometrical point-to-point correspondences to compute external forces exerted on the mesh. The real-time performance of the system is demonstrated on synthetic and real data involving challenging deformations and motions

    Introduction to the Special Issue on Aerial Manipulation

    Get PDF
    The papers in this special section focus on aerial manipulation which is intended as grasping, positioning, assembling and disassembling of mechanical parts, measurement instruments and any other kind of objects, performed by a flying robot equipped with arms and grippers. Aerial manipulators can be helpful in those industrial and service applications that are considered very dangerous for a human operator. For instance, think of tasks like the inspection of a bridge, the inspection and the fixing-up of high-voltage electric lines, the repairing of rotor blades and so on. These tasks are both very unsafe and expensive because they require the performance of professional climbers and/or specialists in the field. A drone with manipulation capabilities can instead assist the human operator in these jobs or, at least, in the most hazardous and critical situations. As a matter of fact, such devices can indeed operate in dangerous tasks like reaching the bottom of the deck of a bridge or the highest places of a plant or a building; they can avoid dangerous work at height; aerial platforms can increase the total number of inspections of a plant, monitoring the wear of the components. Without doubts, aerial manipulation will improve the quality of the job of many workers

    Nonprehensile Dynamic Manipulation: A Survey

    Get PDF
    Nonprehensile dynamic manipulation can be reason- ably considered as the most complex manipulation task. It might be argued that such a task is still rather far from being fully solved and applied in robotics. This survey tries to collect the results reached so far by the research community about planning and control in the nonprehensile dynamic manipulation domain. A discussion about current open issues is addressed as well

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Tracking Fractures of Deformable Objects in Real-Time with an RGB-D Sensor

    Get PDF
    This paper introduces a method able to track in real-time a 3D elastic deformable objects which undergo fractures, using the point cloud data provided by an RGB-D sensor. Our framework relies on a prior visual segmentation of the object in the image. The segmented point cloud is registered by non-rigidly fitting the mesh, based on the Finite Element Method to physically model elasticity, and on geometrical point-to-point correspondences to compute external forces exerted on the mesh. Fractures are handled by processing the stress tensors computed on the mesh of the FEM model, in order to detect fracturable nodes. Local remeshing around fracturable nodes is then performed to propagate the fracture. The real-time performance of the system is demonstrated on real data involving various deformations and fractures

    Tracking an elastic object with an RGB-D sensor for a pizza chef robot

    Get PDF
    This paper presents a method to track in real-time a 3D object which undergoes large deformations such as elastic ones, and fast rigid motions, using the point cloud data provided by a RGB-D sensor. This solution would contribute to robotic humanoid manipulation purposes. Our framework relies on a prior visual segmentation of the object in the image. The segmented point cloud is then registered first in a rigid manner and then by non-rigidly fitting the mesh, based on the Finite Element Method to model elasticity and on geometrical point-to-point correspondences to compute external forces exerted on the mesh. The real-time performance of the system is demonstrated on real data involving challenging deformations and motions, for a pizza dough to be ideally manipulated by a chef robot

    Hierarchical Task-Priority Control for Human-Robot Co-manipulation

    Get PDF
    The extensive distribution of collaborative robots in indus- trial workplaces allows human operators to decrease the weight and the repetitiveness of their activities. In order to facilitate the role of the human worker during the interaction with these robots, innovative con- trol paradigms, enabling an intuitive human-robot collaborative manipu- lation, are needed. In this work, a dynamic and hierarchical task-priority control framework is proposed, leveraging a physical interaction with a redundant robot manipulator through a force sensor. The foremost objec- tive of this approach is to exploit the non-trivial null-space of the redun- dant robot to increase the performance of the co-manipulation and, con- sequently, its effectiveness. A comparison between the proposed method- ology and a standard admittance control scheme is carried out within an industrial use case study consisting of a human operator interacting with a KUKA LBR iiwa arm

    A Constructive Methodology for the IDA-PBC of Underactuated 2-DoF Mechanical Systems with Explicit Solution of PDEs

    Get PDF
    This paper presents a passivity-based control strategy dealing with underactuated two-degree-of-freedom (2-DoF) mechanical systems. Such a methodology, which is based on the interconnection and damping assignment passivity-based control (IDA-PBC), rooted within the port-controlled Hamiltonian framework, can be applied to a very large class of underactuated 2-DoF mechanical systems. The main contribution, compared to the previous literature, is that the new methodology does not involve the resolution of any partial differential equation, since explicit solutions are given, while no singularities depending on generalised momenta are introduced by the controller. The proposed strategy is applied to two case studies: a) the stabilisation of a translational oscillator with a rotational actuator (TORA) system; b) the gait generation for an underactuated compass-like biped robot. The performances of the presented solution are evaluated through numerical simulations
    • …
    corecore